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The interaction of nonstationary electric and thermal fields in a layered medium with allowance for mass
transfer is considered. The heating of an electrochemical cell is modeled numerically; the influence of an
electric double layer at the metal–electrolyte interface is investigated.

Introduction. Investigation of the interaction of electric and thermal fields with allowance for mass transfer
and contact phenomena is a complex and topical problem of the theory and practice of various fields of natural sci-
ence and technology.

Two approaches are applicable to solution of the problem posed. One can consider in detail the action of an
electric field on electric charges that exist independently or are incorporated into the molecules or atoms of a medium.
The computations required in this case are cumbersome because it is necessary to take into account the action not only
of the incident wave but also of the secondary waves from all the remaining charges [1, p. 302].

The other way of solving the problem relies on phenomenological electrodynamics whose propositions provide
the basis for the investigations of the present work.

Let us consider the interface S of two media with different electrophysical properties. Under the action of the
external electric field, surface charges σ and surface currents i (vectors lying in the tangential plane to the interface S)
occur on the contact. On both sides of the interface, the vectors of the magnetic-field strength H and the magnetic in-
ductance B and of the electric field E and the electric displacement D are finite and continuous but they can undergo
a discontinuity of the first kind at the phase boundary.

In considering the electromagnetic field which interacts with a material medium, we use the Maxwell equa-
tions [1, p. 299]

∂ D
∂t

 + Iq = ∇  × H ,   ∇ D = ρ ,   − 
∂ B
∂t

 = ∇  × E ,   ∇ B = 0 ,
(1)

where Iq is the conduction current and ρ is the space electric charge. At the interface S, the system of equations (1)
is supplemented with the conditions [1, p. 401]

Dn1 − Dn2 = σ ,   Bn1 − Bn2 = 0 ,   Eτ1 − Eτ2 = 0 ,   Hτ1 − Hτ2 = 
4π
c

 (i ⋅ n) .
(2)

Here c is the electrodynamic constant, the subscripts n and τ denote the normal and tangential components of the vec-
tors to the interface S, and the subscripts 1 and 2 denote the adjacent media with different electrophysical properties.

The surface charge σ is formed due to the spontaneous redistribution of ions or electrons at the interface of
a layered medium for equalization of Fermi energy levels [2, p. 425], which results in the occurrence of an electric
double layer and a spatial distribution of electric charges at the boundary of contact of different substances.

Nonstationary thermal and diffusion processes influence the structure of the electric double layer, which makes
the problem of modeling of electric fields much more difficult. The reasons for the charge distribution can be different:
in the case of the electrolyte–metal contact it is attributed to the transition of the ions from the electrode to the solu-
tion, specific adsorption of the ions of one sign on the electrode surface, and orientation of polar molecules near the
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electrode surface [3, p. 39]. Other factors are responsible for the structure of the electric double layer in the case of
contact of two solid conductors or a dielectric and a conductor; this structure has its distinctive features [4, p. 490; 5].

We note that the structure of the electric double layer substantially influences electrokinetic phenomena, the
rate of electrochemical processes, and the stability of colloidal systems.

For the indicated reasons, the electric double layer produces fundamental difficulties in modeling electric fields
in a layered medium.

Construction of the equivalent circuits to take into account the electric double layer through introduction of
the surface capacitance [5] which is determined experimentally is worthwhile only for the range of those conditions
under which it has been determined.

The work seeks to construct a physicomathematical model of the interaction of nonstationary electric fields in
a layered medium with allowance for nonstationary thermal phenomena and mass transfer without explicit separation
of charge carriers. The media in contact are considered to be homogeneous. For the sake of clear representation, we
will consider two-layer, one-dimensional models.

Interaction of Electric and Thermal Fields. In different substances, the processes of transfer of charge and
energy are interrelated. The quantity of the released heat is determined by Joule heating and by the effects of Thom-
son and Peltier. The problem of interaction of nonstationary thermal phenomena has been considered in [6] without
taking into account the Thomson effect.

According to [7, p. 153], the expressions for the conduction-current density and the energy-flux density in the
absence of an external magnetic field or in the case of its slight influence have, respectively, the form

Iq = − λ (α (T) grad T + grad ϕ) ,   IT = − k (T) grad T + Iq (Π + ϕ) ,

where α(T) is the specific thermoelectromotive force, Π = αT is the Peltier coefficient, ϕ is the potential, and k(T) is
the thermal-conductivity coefficient. We note that the problem is always nonlinear.

Having eliminated the magnetic-field strength from system (1) according to one method of [8–10], we obtain
the equation for the electric-field strength

ε

c
2 

∂2
E

∂t
2  + µ0 

∂Iq

∂t
 = 

1

µ
 ∇ 2

E .
(3)

The heat-balance equation has the form [7, p. 154]

cpρ 
∂T

∂t
 = div (k (T) grad T) + Iq ⋅ (E − (α (T) + Tβ (T)) grad T) .

(4)

At the interface, the following relation [11, p. 420] holds:

div i + Iqn1 − Iqn2 = − 
∂σ
∂t

 .
(5)

Here ε is the permittivity, c2 = 1 ⁄ (ε0 µ0), µ is the magnetic permeability, ε0 is the electric constant, µ0 is the magnetic
constant, cpρ is the product of the specific heat of the medium by its density, and β(T) = ∂α(T) ⁄ ∂T.

In deriving Eq. (4), use has been made of the condition of local electroneutrality of the substance. We give a
differential formulation of the problem and the method of its solution in greater detail.

Let us investigate, on the segment [0 ≤ x < l] = [0 ≤ x < ξ] 2 [ξ ≤ x ≤ l], the contact of homogeneous media 1
and 2 with different electrophysical properties. The quantities ε, λ, µ, E, and ϕ have discontinuities of the first kind
at the point of the interface x = ξ. We will consider the case of plane contact where the influence of surface currents
can be disregarded and the thickness of the electric double layer is much smaller than the characteristic dimension of
the object. We set E = −grad ϕ. Equations (3) and (4) for the one-dimensional problem will take the form

ε

c
2
 
∂2

E

∂t
2

 + µ0 
∂

∂t
 



− λ 




α (T) 

∂T

∂x
 − E








 = 

1

µ
 
∂2

E

∂x
2

 ,
(6)
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cpρ 
∂T

∂t
 = 

∂
∂x

 



k (T) 

∂T

∂x




 − λ 




α (T) 

∂T

∂x
 − E




 



E − (α (T) + Tβ (T)) 

∂T

∂x




 .

(7)

Conditions (2) and (5) will be written, respectively, in the form

ε1ε0E1 x=ξ−0 − ε2ε0E2 x=ξ+0 = σ x=ξ , (8)

λ1 



E1 − α1 (T) 

∂T

∂x







 x=ξ−0

 − λ2 



E2 − α2 (T) 

∂T

∂x







 x=ξ+0

 = − 
∂σ
∂t



 x=ξ

 .
(9)

By differentiating (8) with respect to time and taking into account (9), at the phase boundary we obtain the condition
of equality of the total currents




λ 




E − α (T) 

∂T

∂x




 + εε0 

∂E
∂t







 x=ξ

 = 0 .
(10a)

Here and in what follows, for the arbitrary function f we adopt the notation

[f] x=ξ = f x=ξ+0 − f x=ξ−0 .

Equality (8) is a corollary of the relation lim
x→ε%0

 div D = ρ [11, p. 40]. Taking into consideration the finiteness of

the value of the space electric charge and the continuity of it, in the one-dimensional case we obtain




εε0 

∂E

∂x







 x=ξ

 = 0 .
(10b)

Relations (10) reflect the laws of conservation and continuity of electric charge [7, p. 156; 11, p. 420].
At the contact point, we also have the equality of the temperatures and the energy fluxes [7, p. 256]:

[T] x=ξ = 0 , (11a)




k (T) 

∂T

∂x
 + λ 




α (T) 

∂T

∂x
 − E




 (α (T) T + ϕ)





 x=ξ

 = 0 .
(11b)

Thus, in the presence of the interaction of the electric and thermal fields in a layered medium, the equality of
the charge fluxes (10a), the equality of the charges (10b) (when the conditions of quasineutrality of the contacting
media beyond the electric double layer are satisfied), the equality of the temperatures (11a), and the equality of the
energy fluxes must be fulfilled at the interface of the media. In the relations for the charge and energy fluxes, we take
into account cross thermoelectrical phenomena.

The process of charge of the electric field is considered on the finite time interval [0 ≤ t ≤ t0]. The initial con-
ditions have the form

T (x, 0) = T0 (x) ,   E (x, 0) = f1 (x) ,   
∂E (x, 0)

∂t
 = f2 (x) .

(12)

We give the boundary conditions, for example, for the value x = 0. We set the value of the total-current den-
sity to be known




λ 




α (T) 

∂T

∂x
 − E




 − εε0 

∂E

∂t






 x=0

 = j1 (t)
(13)
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and take into account the heat exchange at the boundary using the Newton relation




k (T) 

∂T

∂x
 + λ 




α (T) 

∂T

∂x
 − E




 (α (T) T + ϕ)







 x=0

 = γ1 (T − T
∗ ) x=0 ,

(14)

where γ1 is the coefficient of heat exchange and T∗  is the ambient temperature.
We consider the analogous relations at the right-hand boundary.
Interaction of Electric and Thermal Fields with Allowance for Mass Transfer. Let us consider the nonsta-

tionary model of heat and mass transfer for electrochemical systems with the example of electrolysis. For this problem,
an electric double layer occurs at the site of contact of the electrolyte with the metallic anode and cathode. Let us set
the density of the space charge beyond the electric double layer of the metal–electrolyte contact to be zero at the in-
itial instant and hence, according to [12, p. 27], remain constant in the future while the voltage drop in the electrodes
and leads is small. The influence of the electrodes on the temperature field of the electrolyte will be taken into ac-
count in terms of the coefficient of heat exchange.

Two approaches to modeling of diffusion-electrical phenomena have currently been developed, each of which
has certain disadvantages and advantages. The first approach [13–15] is characterized by consideration of the flows of
ions of the corresponding sort in a completely or partially dissociated electrolyte. The equations derived contain many
parameters, the reliable procedure of determination of which is absent in the majority of cases. Furthermore, the pro-
posed theory fails to provide for taking into account the interaction of the cations and the anions of the dissolved sub-
stance with each other and with the molecules of the solvent. It must also be borne in mind that, apart from the
dissociation reaction, we have the association of simple molecules which in turn are dissociated into complex and sim-
ple ions. It is difficult to determine the diffusion coefficients of complex ions; it is also difficult to take into account
the force interaction of complex cations and anions with each other and with the external electric field. The difficulties
in question become more serious when a multicomponent electrolyte is described. We note that such difficulties also
arise in modeling, for example, certain problems of plasma physics.

The second approach [16–19] fails to provide for the introduction and determination of the coefficients of mo-
lecular diffusion of cations and anions and the degree of dissociation of the electrolyte. It is based on the interaction
of the mass and charge fluxes. The ionic flows are not determined.

The system of equations describing the electrodynamic processes in the electrolyte is as follows:

ε

c
2 

∂2
E

∂t
2  + µ0 

∂Iq

∂t
 = 

1

µ
 ∇ 2

E ,   
∂n

∂t
 = − div (Im) ,   c0 ρ0 

∂T

∂t
 = − div (IT) , (15)

Here Iq, Im, and IT are the densities of the conduction current and of the mass and heat fluxes which (in the case of
the nonequilibrium state of the medium) have, respectively, the form [7, p. 153]

Iq = λ (E − λA
∗

 grad n) − λα  (T) grad T ,

Im = − DM grad n + DA
∗

 λ E − DT grad T , (16)

IT = − k grad T + Iq (Π + ϕ) − DT
∗
 grad n ,

where DM is the molecular diffusion coefficient, DA
∗  is the ambipolar diffusion coefficient, DT is the thermal diffusion

coefficient, DT
∗  is the coefficient taking into account the transfer of heat due to the motion of the impurity, and n is

the concentration of the impurity.
We give the initial

E (x, 0) = E0 (x) ,   
∂E (x, 0)

∂t
 = E

~
 (x) ,   T (x, 0) = T0 (x) ,   n (x, 0) = n0 (x) (17)
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and boundary conditions (anode–electrolyte, x = 0)

Iq (t) = λ 



λA

∗
 
∂n

∂x
 − E




 + λα (T) 

∂T
∂x

 − εε0 
∂E
∂t

 ,

γ1 (T − T
∗ ) = k 

∂T

∂x
 − Iq (Π + ϕ) + DT

∗
 
∂n

∂x
 ,

(18)

kaIq (t) = DM 
∂n

∂x
 − DA

∗
 λE + DT 

∂T

∂x

in modeling the one-dimensional problem in the region G = [0 ≤ x ≤ l] × [0 ≤ t ≤ T]. Here ka is the electrochemical
equivalent of a substance which deposits at the anode. The analogous conditions hold for x = l as well.

The constructed system of differential equations makes it possible to model the processes of transfer in
the electrochemical system with allowance for the influence of an electric double layer; this influence directly de-
termines the thermoelectrical and ambipolar electrodiffusion phenomena at the boundary of the metal–electrolyte
contact.

Numerical Modeling of Electrochemical Systems. Heating of an Electrochemical Cell in the Case of Con-
stant-Current and Pulse Electrolysis. In electrochemical systems, the electrodes are metals as a rule. The electrical
conductivity of metals is hundreds of times higher than the specific electrical conductivity of electrolytes; therefore,
one can disregard the voltage drop in electrodes and leads. In highly conductive metals, one can also disregard the dis-
placement currents and the coefficients of ambipolar diffusion and thermal diffusion and restrict oneself to considera-
tion of the system of equations (15)–(18) just in the electrolyte itself.

Let us consider the process of heating of an electrochemical medium in the case of passage of an electric cur-
rent with density Iq(t) through a solution of copper sulfate CuSO4⋅5H2O. We use copper (99.78%) as the anode. The
copper from the solution is deposited at the cathode. We set the current efficiencies for the copper equal to 100% and
the electrochemical equivalent ke equal to 0.6588⋅10−6 kg/C. The dependence of the specific electrical conductivity
λ(n) of the copper-plating electrolyte on the concentration of the copper sulfate in water is given in [20]; the depend-
ence of λ and k on the temperature will be considered to be insignificant. In the calculations for CuSO4, we set
DM = 5⋅10−10 m2 ⁄ sec, DA

∗  = 10−11 λ, λA
∗  = 10−4 λ, ε = 70, and µ = 1 and disregard the effects of thermal diffusion. The

distance between the cathode and the anode is L = 0.05 m. The heat capacity, the density, and the thermal-conductivity
coefficient of the electrolyte are taken to be 4.2⋅103 J/(kg⋅K), 103 kg ⁄ m3, and 0.6 V/(m⋅K) respectively. We note that
the regimes of pulse action have been considered in [21] as applied to the processes of electrodeposition of alloys.
This investigation has been carried out on the basis of a separate description of the transport of ions and the employ-
ment of the Kirchhoff law for quasistationary currents in a cell. With such an approach, the displacement currents are
taken into account indirectly through introduction of the capacitive current of the electrode and determination of the
experimental dependence of the polarization capacitance of the electrode on the character of the pulse action. In [21],
it has been noted that neglect of the capacitive current in pulse electrolysis involves significant errors. The employ-
ment of system (15)–(18) to model the process of copper plating makes it possible to consider the problems without
introducing the concepts of inductance and capacitance.

The obtained nonlinear system of equations is solved by the finite-difference method analogously to [17].
We have modeled numerically the process of copper plating for a constant current and a pulse current (Fig.

1). The density of the constant current was equal to 300 A ⁄ m3. The maximum density of the pulse current was also
300 A ⁄ m3, while the period of traversal of the current and the break were equal to 0.01 sec.

Figure 1 gives the results of modeling the distributions of the concentration of CuSO4 and the temperature for
different regimes of electrolysis. The measurements were carried out within 60 sec after switching on the current. It is
seen from the figure that the concentration gradients near the cathode surface (x = 1) are different and depend on the
regime of copper plating. In the case of nonstationary action they are substantially smaller than in the case of elec-
trolysis in the regime of constant current. As has been shown in [21], this tendency also holds in the case where one
and the same total charge passes through the electrochemical cell.
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The analysis of the temperature field (Fig. 1b) shows that the temperatures of the electrolyte in the vicinity of
the anode and the cathode differ significantly. Nonsymmetric heating of the electrochemical cell attributed to the am-
bipolar diffusion and electrical ambipolar conductivity occurs. The modeling results are in agreement with the data of
[22, p. 29].

With the aim of measuring the temperature in the surface layer of the electrolyte solution near the cathode
and comparing the results to the calculated data, we developed and manufactured an experimental setup. Copper anode
and cathode were placed in an electroplating bath with a sulfuric-acid copper-plating electrolyte. In the 1-mm-thick
cathode, a hole was made into which we placed a temperature-sensitive element. As the latter we employed a thermal
resistor. The current strength in the bath was prescribed by a variable resistor.

Figure 2 gives the results of numerical modeling and the experimental data on heating of the cathode region
in relation to the regime of current. It is seen that the increase in the density of the current (both constant and pulse)
causes the temperature near the cathode surface to increase. In the anode, no increase in the temperature was observed
either in the calculations or in the experiment, which is in agreement with the data of [22]. The surface temperature
obtained in solving Eqs. (15)–(18) in the regime of constant current is 10–15% higher than the temperature recorded
in the experiments.

A more complicated situation occurs when we compare the experimental data and the results of numerical
modeling in the regime of pulse electrolysis. The results of the experiments demonstrate that in the regime of pulse
current the temperature of the electrolyte in the cathode region increases more than in the regime of constant current.
At the same time, the numerical calculations of the pulse electrolysis show that the heating of the cathode region here
is smaller than for the regime of constant current. The difference is, apparently, attributed to concentration convection
[23], whose influence is substantial for high densities of the current for pulse electrolysis.

In a longer term, one must take into account natural and concentration convection and heat exchange with the
ambient medium. Nonetheless, despite the errors in determination of the coefficients and the assumptions made in the
model, the calculation results are in qualitative agreement with the experimental data, which makes it possible, in cer-
tain cases, to use the proposed approach for modeling of nonstationary processes.

Fig. 1. Distribution of the normalized concentration of CuSO4 (a) and the tem-
perature (b) in an electrochemical cell within 60 sec after switching on the
current. The solid curve, at constant current; the dashed curve, at pulse current.
T, oC; x, mm.

Fig. 2. Heating of the electrolyte in the cathode region as a function of the
value and kind of polarizing current: 1) constant current; 2) pulse current; 3,
4) corresponding experimental data. ∆T, oC; Iq, A ⁄ m2.
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Conclusions. For the first time, we have constructed a consistent physicomathematical model of interaction of
nonstationary electric and thermal fields in a layered medium with allowance for mass transfer. The model is based on
the methods of thermodynamics and on the equations of an electromagnetic field and is formulated without explicit
separation of the charge carriers and the charge of an electric double layer. We have obtained the relations for the
electric-field strength and the temperature, which take into account the equality of the total currents and the energy
fluxes, to describe the electric and thermal phenomena in layered media where the thickness of the electric double
layer is small as compared to the dimensions of the object under study.

We have modeled numerically the heating of an electrochemical cell with allowance for the influence of the
electric double layer at the metal–electrolyte interface. The calculation results are in satisfactory agreement with experi-
mental data.

NOTATION

DM, molecular diffusion coefficient, m2 ⁄ sec; L, length, m; DA
∗ , ambipolar diffusion coefficient, kg/(A⋅sec); λ,

specific electrical conductivity, 1 ⁄ (Ω⋅m); λA
∗ (n), coefficient of specific electrical ambipolar conductivity, V⋅m3 ⁄ kg; ke,

electrochemical equivalent of copper, kg/C. Subscripts: n, normal; q, charge; m, impurity mass; a, anode; A, ambipo-
lar; M, molecular; e, equivalent.
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